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Butler, James P., Iva Marija Tolić-Nørrelykke, Ben
Fabry, and Jeffrey J. Fredberg. Traction fields, moments,
and strain energy that cells exert on their surroundings. Am
J Physiol Cell Physiol 282: C595–C605, 2002. First published
October 31, 2001; 10.1152/ajpcell.00270.2001.—Adherent
cells exert tractions on their surroundings. These tractions
can be measured by observing the displacements of beads
embedded on a flexible gel substrate on which the cells are
cultured. This paper presents an exact solution to the prob-
lem of computing the traction field from the observed dis-
placement field. The solution rests on recasting the relation-
ship between displacements and tractions into Fourier space,
where the recovery of the traction field is especially simple.
We present two subcases of the solution, depending on
whether or not tractions outside the observed cell boundaries
are set to be zero. The implementation is computationally
efficient. We also give the solution for the traction field in a
representative human airway smooth muscle cell contracted
by treatment with histamine. Finally, we give explicit formu-
las for reducing the traction and displacement fields to con-
traction moments, the orientation of the principal axes of
traction, and the strain energy imparted by the cell to the
substrate.

displacement fields; fluorescent beads

CELLS EXERT TRACTIONS on their surroundings in the
course of a variety of cell functions including contrac-
tion, spreading, crawling, and invasion. These func-
tions are associated with complex mechanical interac-
tions between the substrate, adhesion molecules,
cytoskeletal elements, and molecular motors. Dembo
and Wang (3) recently have shown that the traction
field that a cell exerts on its surroundings can be
mapped from knowledge of the displacement field in a
flexible substrate on which cells are adherent. Mea-
surement of the displacement field is accomplished by
tracking small beads, typically 0.2 �m in diameter,
embedded near the surface of the substrate gel. Com-
puting the tractions from the measured displacement
field is difficult and computationally intensive, how-
ever, so much so that Pelham and Wang (5), for exam-
ple, suggested using the raw displacements themselves
as a qualitative map of the local tractions. More re-

cently, Balaban et al. (1) implemented a simplified
version of the Dembo and Wang (hereafter denoted
DW) approach, which is restricted to the case of iso-
lated point sources of traction.

In this article, we describe the foundations of Fourier
transform traction cytometry (FTTC), a new and com-
putationally efficient method for computing the trac-
tion field given the displacement field. FTTC divides
into two subcases (unconstrained and constrained),
described below, and in several respects is fundamen-
tally different from the DW method. The first key
difference is that the DW method requires the cell
boundary to be drawn by hand and constrains the
tractions exterior to the boundary to be zero while still
retaining approximate matching of the exterior dis-
placements. By contrast, unconstrained FTTC exactly
matches all the displacement data, independent of the
perceived cell boundary; constrained FTTC forces the
tractions exterior to the cell boundary (drawn by hand)
to be zero, as in the DW method, but ignores the
exterior displacement data. The second key difference
is that the DW approach utilizes Tikhonov regulariza-
tion (8, 9) with a particular choice and intensity of
smoothing functional (6, 10). By contrast, FTTC uti-
lizes no smoothing and is exact in the sense that it
yields a traction map for which the induced displace-
ments exactly match the given displacement field. The
DISCUSSION elaborates these issues.

We present the explicit formulation and solution to
the traction recovery problem and introduce the con-
cept of contraction moments and strain energy, which
are particularly robust measures that characterize the
cell-substrate interaction. Finally, we include one ex-
ample of the traction field associated with a human
airway smooth muscle cell and an illustration of the
displacement and traction fields associated with a par-
ticularly simple simulation. In two companion studies
(7, 11), we have utilized FTTC to address the biologi-
cally important questions of the relationship between
cell prestress and cell rigidity, and the extent to which
microtubules play a role in this connection.
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THEORY

The Boussinesq Solution

The traction field is defined as the stress, i.e., local
force per unit area, imposed on the gel surface by an
adherent cell. The traction field, in turn, determines
the displacement field of the gel surface. If the gel can
be approximated as a semi-infinite solid (see Limits of
applicability), the displacements can be computed from
the distribution of surface tractions as follows. First,
one finds the displacement field, or Green’s function,
associated with a point traction on the surface. This is
a classic problem, the solution to which was found by
Boussinesq (see Ref. 4). Second, integration of this
function over the given traction field then yields the
corresponding displacement field; this is the so-called
forward problem. The problem we address in this arti-
cle is the inverse problem, namely, inferring the trac-
tion field from measured displacements.

The FTTC method is based on Fourier analysis and
arises from the observation that the displacement at
any point r� on the surface due to a point traction source
at another point r�� is (apart from the direction of the
displacement and the direction of the traction) a func-
tion only of the difference �r� � r���. We denote the
displacement vector at r�� as u� (r�) and the traction vector
at r�� as T� (r��). We denote the Green’s function, or kernel,
mapping traction to displacement by the tensor K �
K(�r� � r���). The displacements are then given by the
convolution u� � K V T� . In this representation, u� (r�) and
T� (r��) are 2-vectors with elements labeled x and y (we
ignore displacements in the z direction, and the trac-
tion in the z direction, or normal stress, is taken to be
0), the kernel K is a 2 � 2 matrix, and V denotes
integration over r��. The major difficulty in the inver-
sion of this equation is that K is not diagonal in r� and
r�� (if it were, then the solution would only involve
inverting a 2 � 2 matrix). The fact that K is not
diagonal in real space (i.e., tractions at one point are
coupled to displacements at different points) is the
origin of why its inversion in real space necessarily
requires the construction and inversion of very large
matrices (as in the DW approach). In Fourier space,
these difficulties do not arise.

The Boussinesq solution is diagonal in Fourier space.
The key to the FTTC method is the exploitation of the
Faltung or convolution theorem, which states that the
Fourier transform of a convolution is the simple prod-
uct of the Fourier transforms of the functions con-
volved. The forward problem then becomes u�̃ (k�)
� K̃(k�)T�̃ (k�), where the tilde overbar denotes the (two
dimensional) Fourier transform with wave vector k� .
In this form it is clear that K̃ is diagonal in that there
is no coupling between different wave vectors k� . Of
course, K̃ remains a nondiagonal 2 � 2 matrix insofar
as tractions in the x or y direction separately induce
displacements in both the x and y directions, but this
presents no difficulty because K̃ remains strictly diag-
onal in k� space. It follows that K̃�1 is trivial to compute

if K̃ is known. The solution to the inverse problem is
then given by

T� � FT2
�1�K̃�1u�̃ � (1)

where FT2
�1 denotes the (two dimensional) inverse

Fourier transform.
Explicit evaluation of the kernel in Fourier space.

Implementation of Eq. 1 requires an explicit formula
for K̃(k�), the Fourier transform of the Boussinesq solu-
tion K(r), where r � �r��. The forward kernel, written in
matrix form, for a point source at the origin is given by
Landau and Lifshitz (4), which when reduced to x and
y displacements with zero normal traction is given by

K�r� �
A
r3 ��1 � ��r2 � �x2, �xy

�xy, �1 � ��r2 � �y2� (2)

where A � (1 	 �)/
E, in which � is Poisson’s ratio and
E is Young’s modulus. The components of this matrix
are denoted Ki,j, where the indices i and j run through
(x, y); this notation will be used consistently with all
matrices and vectors. Thus the two-dimensional Fourier
transforms of r�1, x2/r3, xy/r3, and y2/r3 are required.
These can be derived in several different ways. One
especially clear method can be sketched as follows; it
relies on a generalization of the problem to three dimen-
sions and a subsequent reduction to two dimensions. We
begin with the singular solution to Laplace’s equation
in three dimensions, �2r�1 � �4
�3(r�), where � is the
Dirac delta function. We denote the three-dimensional
Fourier transform by FT3, which when applied to the
Laplace equation yields FT3(r�1) � 4
/(kz

2 	 k2), where
we separated out the wave vector kz from the wave
vectors in the x, y plane (here k2 � kx

2 	 ky
2, and in what

follows, k is the nonnegative square root of k2). Now
note that the two-dimensional Fourier transform is the
single inverse three-dimensional transform in z, eval-
uated at z � 0, i.e.

FT2� f � � �1/2
�

��

�

e � ikzzFT3� f �dkz�z � 0

� �1/2
�

��

�

FT3� f �dkz

The desired answer reduces to an elementary integral

FT2�r
�1� � �1/2
�


��

�

4
/�kz
2 � k2�dkz � 2
/k

The other three transforms can be obtained by simple
manipulations. Consider the expression �/�kxFT2[(�/
�x)r�1]. This can be evaluated in two distinct ways.
First, directly differentiating with respect to x and kx
yields

�i
d2rei �k � r�x2/r3 � �iFT2�x
2/r3�

Second, integrating by parts with respect to x yields
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�/�kx
d2r��ikx�e
ik� � r�r�1 � �i��/�kx�2
kx/k

where we use the transform of r�1 obtained above.
Performing the indicated derivative with respect to kx
and setting the two independent evaluations equal,
we obtain FT2(x2/r3) � (2
/k3)(k2 � kx

2) � 2
ky
2/k2. By

symmetry, the transform of y2/r3 can be written down
by inspection, and the transform of xy/r3 can be ob-
tained by evaluating �/�kyFT2[(�/�x)r�1] in the same
two distinct ways as above. In summary, the desired
transformed matrix is given by

K̃�k�� � A
2


k3 ��1 � ��k2 � �ky
2, �kxky

�kxky, �1 � ��k2 � �kx
2� (3)

Contraction moments. The Fourier approach also
gives robust measures of certain low order moments of
the tractions. The zeroth order moment of the tractions
is given by


d2rT� �r�� � T�̃ �k� ��k� � 0

and is equal to the net force applied by the cell to the
substrate. For isolated adherent cells, this is known a
priori to be zero. However, registration shifts from one
image to another of a given pair (say before and after
contractile activation) will induce a spurious traction
field corresponding to a non-zero net force. This artifact
can be trivially accounted for in Fourier space simply
by setting T�̃ (0) � 0, which guarantees no net force by
the cell on the substrate.

The first order moments are associated with contrac-
tion/dilation tractions (radially oriented tractions) and
tractions corresponding to torques (circumferentially
oriented tractions). These correspond to the four com-
binations of the tractions in the x and y directions
weighted by their x and y coordinates. For example, a
positive traction in the y direction (Ty) at a location
with a positive x coordinate (or a negative Ty at some
x � 0) will contribute to a counterclockwise rotational
torque through a term proportional to xTy. As a visual
aid, the four terms are shown schematically in the
following diagrammatic representation

When symmetrized (since the net torque conferred by
the cell on the substrate must be zero) and integrated
over the surface, this is the contraction/dilation and
shear moment matrix M. Written in component nota-
tion, this matrix is explicitly given by

Mij � �1⁄2�
d2r�xiTj�r�� � xjTi�r���

� ��i/2���T̃j�k��/�ki � �T̃i�k� )/�kj]�k��0 (4)

We approximate the derivatives by discrete differences
in k space. Because T�̃ (0) � 0 by construction (to elim-
inate registration artifact), this expression then in-
volves only the Fourier transforms of the tractions at
the lowest non-zero wave numbers, �kx and �ky. Ex-
plicitly, Eq. 4 reduces to

Mij �
��i/2��T̃j��ki� � T̃i��kj��

��k�
(5)

The interpretation of the elements of the moment ma-
trix, Mij, is as follows. The total contribution of the cell
to contracting the substrate in the x and y directions is
given by Mxx and Myy, respectively. Mxy (or Myx) is the
contribution of the cell to deformation of the substrate
arising from variations in x tractions with y and vari-
ations in y tractions with x. There are additional aniso-
tropic contributions arising from unequal variations of
x tractions with x and from y tractions with y, i.e., when
Mxx � Myy. A simple way to characterize this is to apply
a rotation operator R to M such that Mrot � R�1MR is
diagonal, i.e., Mxy

rot � Myx
rot � 0. This form puts all the

tractions of the cell into their principal axes. The ori-
entation of the principal tractions can be obtained from
the x, y coordinate axes of the original images and the
angle of rotation of R. This orientation of the cell is
then clearly independent of the coordinate system, and
may be an important measure of directionality in cell
motility assays, including chemotaxis. In this context,
the ratio of the principal tractions is a direct measure
of the traction polarity of the cell.

The net moment tending to dilate or contract the
substrate is given by the trace of the moment matrix;
we thus define the net contractile moment � of the cell
by

� � tr�M� � Mxx � Myy (6)

(Here either M or Mrot can be used because the trace is
invariant under coordinate rotations.) The net contrac-
tile moment � is a coordinate invariant scalar measure
of the cell’s contractile “strength.”

Strain energy. The total energy U transferred from
the cell to the elastic distortion of the substrate is given
by

U � �1⁄2�
T� �r�� � u� �r��dxdy (7)

and is another measure of contractile strength. The use
of Fourier analysis may involve some artifactual be-
havior at the field boundaries, which is particularly
pertinent in computing the strain energy. We therefore
evaluate this integral over the strict interior of the
field, i.e., without the boundary points. Because of this,
the value obtained is different from the evaluation of
Eq. 7 in Fourier space with Parseval’s theorem. The
source of this discrepancy lies in the use of Fourier
analysis over a finite domain, wherein periodic bound-
ary conditions are imposed. In general, the displace-
ments at the edges of the field of view will not approx-
imate continuous periodic functions, and therefore
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there will be artifactual tractions present along the
bounding nodes of the lattice grid. These in turn will
contribute to the estimated strain energy if they are
included in the integral above. Such artifacts also are
present in the Fourier domain, although they are in
general spread over all Fourier components. It is there-
fore simpler to avoid this problem by direct integration
of the strain energy density over the strict interior of
the domain.

Limits of applicability. Note that both the FTTC
method presented here as well as the DW method and
that of Balaban et al. (1) explicitly approximate the
elastic gel as a semi-infinite medium. It has been
stated that this is valid if the displacements are small
compared with the gel thickness (3), but this is not
correct (Wilson TA, personal communication). In fact,
the ratio of displacements to gel thickness being small
is a necessary (but not sufficient) condition for the
applicability of linear elasticity theory. By contrast, the
use of a semi-infinite elastic continuum to approximate
the finite thickness gel is valid to the extent that the
lateral dimensions of the cell and the lateral distances
over which displacements are measured are both small
compared with the gel thickness. A simple example
will illustrate this. Consider the case of uniform trac-
tion T over a circular region of radius R, on top of an
incompressible slab of thickness h, shear modulus G,
and with a fixed bottom. If R �� h, then the gel is
effectively infinitely thick, the Boussinesq solution ap-
plies, and the displacement of the disk is approxi-
mately RT/G. By contrast, if R �� h, then the medium
is approximately in simple shear, and the displacement
of the disk is approximately hT/G. This implies that, in
the latter case, the displacements will be lower than
would be observed in the semi-infinite medium, which
in turn leads to an underestimate of the tractions.

IMPLEMENTATION

The implementation of all methods of computing
tractions from bead displacements naturally divides
into two parts. The first is the estimation of the dis-
placement field itself on some appropriate lattice or
mesh, and the second is the computation of the traction
field for that given displacement field. This section
describes these two processes.

Estimating the Displacement Field From the Images

To estimate the displacement field of the substrate,
we compared digital images of the same region of the
gel, taken at different times. Images showed fluores-
cent microbeads (0.2 �m) embedded in the gel, before
the cells were plated. In our experiments, there were
usually 1,000–2,000 beads in an image. Images were of
the size 1,024 � 1,280 pixels. Each bead image occu-
pied an area of 4–6 pixels in diameter, and neighboring
beads were about 5–30 pixels apart.

The processing of these images began with the cor-
rection of the pair of images for relative translational
shifts. Here we used the correlation theorem, which
says that the Fourier transform of a correlation of two

functions is a product of the Fourier transform of one
function and the complex conjugate of the Fourier
transform of the other function. We formed the normal-
ized two-dimensional cross-correlation function be-
tween the two images (normalized by the square root of
the product of the maximal values of the autocorrela-
tion functions of these 2 images). We identified the
coordinates of the peak of the correlation function and
translated one of the images with respect to the other
by that uniform displacement. For the calculations of
the correlation functions, we utilized the two-dimen-
sional fast Fourier transform (FFT) algorithm in MAT-
LAB. Even though the images were represented by
relatively large (1,024 � 1,280) matrices, use of the
correlation theorem and FFT algorithm made the ac-
tual computations reasonably fast.

Having the corrected images, we divided them into a
number of small window areas. For these images, we
chose a window size of typically 64 � 64 pixels. The
window areas overlapped; the distance between the
centers of successive windows was chosen to be 16
pixels. The displacement of each window area was then
calculated by correlating a window in one image with
the window at the same coordinates in the other image,
in the way described above for the correlation between
the whole images. The coordinates of the peak of the
cross-correlation function between two windows were
assigned to the center of the window as the window’s
displacement vector. Repeating the same procedure
over all windows yielded the uniform discretized dis-
placement field between two entire images. (The fact
that this technique yields a lattice with uniform spac-
ing means that simple FFT algorithms can be used in
the subsequent analysis.)

The window size of 64 � 64 pixels was chosen to
guarantee that at least one fluorescent marker was
located within the window, regardless of the window
position. To evaluate the potential smoothing effect of
widow size on the recovered traction field, we also
experimented with smaller windows down to 16 � 16
pixels. This required us to manually eliminate win-
dows that did not include fluorescent markers and to
substitute the missing displacements with those ob-
tained from runs that employed larger windows. In the
cell that we chose as an example here (see Figs. 3–5),
smaller window sizes did not appreciably alter the
recovered traction field.

Images of different gels differed in bead number and
distribution. For images with a relatively low number
of beads or less uniform bead distribution, there were
window areas for which the computed cross-correlation
was below a threshold that we set at 0.95. For the
displacement of such window areas, we used values
obtained by fitting the rest of the displacement field by
a third-order polynomial and calculating the values of
the polynomial in the points of the lattice for which the
value was missing.

Our method of obtaining the displacement field is
different from the DW approach, which relies on the
measurement of the x, y coordinates of beads in each of
the two images. We encountered two difficulties with
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that method. First, there is the issue of determining
bead identity; the displacement requires the initial and
final positions of the same bead. This is not a problem
if bead density is low, but in attempting to achieve
higher resolution with higher bead densities, some
bead identities can become ambiguous; errors here can
lead to spurious displacements and, hence, artifactual
tractions. Second, there may be areas on some images
where beads are sparse or even absent. In this case, no
estimates are possible save by interpolation from
neighboring regions. Our method of maximizing the
cross-correlation of small windows between the two
images is less sensitive to these problems. In the first
place, if there are beads with unambiguous identity,
their contrast dominates the cross-correlation function
and the estimated displacements are similar to those
computed by direct position measurements. However,
ambiguities in any one bead identity contribute less to
the displacement field to the extent that other beads
are present in the same window. This is important in
areas where the bead density is high and where there
may be clusters of beads with ambiguous identities.
Areas with no beads also can show reasonable correla-
tion between the two images, depending on the dis-
placements of other features that still carry sufficient
contrast to be measured. Such features may include
heterogeneities in the gel and embedded beads that are
out of focus. In summary, the advantages of the cross-
correlation approach are that it permits semiauto-
mated estimates of the displacement field and is insen-
sitive to ambiguities regarding bead identification
between images.

Computing the Traction Field From the
Displacement Field

We have implemented the solution for computing cell
tractions in two distinct ways. The first method, un-
constrained FTTC, uses all displacement data from an
image pair obtained as described in Estimating the
displacement field from the images, does not use any
constraints on the recovered tractions, and is a direct
application of the methods described in THEORY. The
second method, constrained FTTC, is the solution to
the mixed boundary value problem, which ignores the
displacement field outside the boundary of the cell and
constrains the tractions outside the cell boundary to be
zero. It is important to note that this method requires
additional information beyond the displacement field,
namely, an independent estimate of the location of the
cell boundary, drawn by hand. As described below,
there are advantages and disadvantages to both meth-
ods; they should be viewed as complementary ap-
proaches.

Unconstrained FTTC. Here we use the direct solu-
tion given by Eqs. 1 and 3. The specific procedure is as
follows. 1) Calculate the Fourier transform of the dis-
crete displacement field (and set the Fourier component
at k� � 0 to zero to eliminate translation artifact).
2) Multiply the transformed displacements by K̃(k�)�1 to
map the transformed displacements to transformed trac-

tions. 3) Take the inverse Fourier transform of the result
to obtain the tractions.

Constrained FTTC. This is a mixed boundary value
problem, with the displacements under the cell being
specified (by measurement) and with the tractions out-
side the cell boundary specified (by assumption) to be
zero. The Fourier approach above also can be used
iteratively to solve this problem. It consists of the
following procedures. 1) Calculate the traction field in
the way described in Unconstrained FTTC. 2) Define a
new traction field by setting the tractions outside of the
cell boundary to zero. 3) Calculate the displacement
field induced by this traction field. This is done by
using the Fourier approach in a forward direction:
calculate the FT of the traction field, multiply by K̃(k�)
to obtain the transformed displacements; the inverse
FT is the new displacement field. 4) Define a new
displacement field by replacing the displacements of
the calculated displacement field within the cell bound-
ary by the experimentally observed displacements. 5)
Repeat steps 1–4 until convergence is reached at some
level of tolerance. There are a variety of criteria that
can be used. In our case we chose to terminate the
iterative procedure when the variation in the maxi-
mum magnitude of the tractions within the cell was
less than 1 part in 106 on succeeding steps.

Note that in both constrained and unconstrained
FTTC, there is an ambiguity in the off-diagonal ele-
ments of K̃(k�)�1 at the Nyquist frequency, because
positive and negative Nyquist frequency components
are indistinguishable but kxky � �kxky. This problem is
avoided by setting the off-diagonal elements of K̃(k�)�1

to be zero when either kx or ky is a Nyquist frequency.

EXPERIMENTAL METHODS

A technique for preparation of polyacrylamide gel
sheets (3) was modified and used to make flexible gel
disks. A mixture of acrylamide (2%), bis-acrylamide
(0.25%), and fluorescent latex beads (diameter 0.2 �m,
1:125 dilution by volume) was added to activated glass
coverslips. The droplet of the solution was covered by a
small circular coverslip. After polymerization (45 min),
the circular coverslip was removed. Type I collagen was
attached to the surface of the gel. Gel disks were
typically 50–70 �m thick and had a diameter of 12 mm.
The elastic modulus (Young’s modulus) of the gel was
determined to be 1,200 Pa; Poisson’s ratio was taken to
be 0.48.

HASM cells were cultured in plastic dishes and se-
rum deprived for 2 days before the experiments. Cells
at passage 3–6 were plated on the gel disks in a
serum-free medium and allowed to spread and stabi-
lize for 6 h. Cells were then stimulated with histamine
(0.01 mM) for 5 min. Photomicrographs were taken of
the cells both with phase-contrast optics to visualize
the cells and with 470-nm ultraviolet illumination to
excite the beads, which fluoresce at 515 nm. To assess
the distribution of beads (and other features with con-
trast) in the unstressed gel, the cells were detached
from the substrate with trypsin (�2%); this therefore
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leaves the flexible gel with no surface tractions. [Note
that the image of the traction-free gel (i.e., “pretreat-
ment”) is taken after the images of the posttreatment
distribution of beads.]

RESULTS

Figure 1 shows a phase-contrast image of a repre-
sentative HASM cell, cultured on the flexible polyacryl-
amide gel covered with collagen type I, prepared as
described in EXPERIMENTAL METHODS, after histamine
treatment.

Figure 2 shows a fluorescence image of the same field
of view as in Fig. 1; the 0.2-�m beads embedded in the
gel are easily visualized. Superposed on this image is
the outline of the cell boundary, drawn by hand from
Fig. 1. (This outline is drawn somewhat larger than the
appearance of the cell in Fig. 1. This is to ensure the
inclusion of potential stress bearing interactions be-
tween the cell and the substrate that may not be visible
and to avoid interactions between the cell boundary
and the discretized lattice on which the solution is
defined. See DISCUSSION.) The corresponding fluorescent
image of the beads after cell detachment with trypsin
(pretreatment condition) looks virtually indistinguish-
able from this picture because the actual bead displace-
ments are very small.

Figure 3 shows the displacement field computed
from the two fluorescent images of the beads pre- and
posttreatment, as described in Computing the displace-
ment field from the images. The arrows in Fig. 3 show
the relative magnitude and direction of the displace-
ment field of the gel under the adherent smooth muscle
cell. Figure 3 also is color coded by the absolute mag-
nitude of the displacements.

Figure 4 shows the traction field as computed by
unconstrained FTTC, the direct computation of trac-
tions from the Fourier decomposition of the displace-
ments. Also shown is the boundary of cell, although it
is important to note that this information was not used

Fig. 1. A phase-contrast image of a human airway smooth muscle
cell, cultured on the flexible polyacrylamide gel covered with collagen
type I, 5 min after treatment with 0.01 mM histamine. Bar, 20 �m.

Fig. 2. Fluorescence image of the same field of view as in Fig. 1,
taken immediately after the light microscopy image in Fig. 1. The
0.2-�m beads embedded in the gel are easily visualized. Superposed
on this image is the outline of the cell, drawn by hand from Fig. 1.
Bar, 20 �m.

Fig. 3. The displacement field computed from the 2 fluorescence
images of the beads pre- and posttreatment. Arrows show the rela-
tive magnitude and direction of the displacement field of the gel
under the adherent smooth muscle cell. Colors show the absolute
magnitude of the displacements in �m (see color bar). Calculations
were performed on a lattice with spacing of 2.67 �m (16 pixels); the
color map is shown to this resolution. For visual clarity in this
illustration and in those remaining, the density of arrows has been
thinned to a spacing of �6 �m.
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in computing the tractions. The arrows in Fig. 4 show
the relative magnitude and direction of the tractions,
and the colors show the absolute magnitude of the
traction vectors.

Figure 5 shows the traction field calculated by con-
strained FTTC, iterating the Fourier approach until
convergence was reached. Note that the tractions are
zero outside the cell boundary by construction. As in
Fig. 4, the arrows show the relative magnitude and

direction, and the colors show the absolute magnitude
of the traction vectors. Notice first that the maps in
Figs. 4 and 5 are similar but that there is a traction
concentration near the boundary of the cell computed
by constrained FTTC (Fig. 5). This results from the
requirement, by construction, that all tractions exte-
rior to the cell must be zero.

Table 1 displays the moment matrices M and Mrot,
the net contractile moment �, the orientation of the
principal tractions, and the strain energy U exerted by
the cell as computed by unconstrained FTTC. Note that
the moments are given in units of picoNewton meters
(pNm) and energy is given in units of picoJoules (pJ).
We use these units to distinguish clearly between mo-
ments (forces multiplied by distances from the origin)
and energy (forces multiplied by displacements), de-
spite the fact that pNm and pJ are formally equivalent.
Table 2 displays the same quantities as computed by
constrained FTTC, with the cell boundary drawn by
hand as shown in Fig. 2. All non-zero tractions are
constrained to lie within this boundary.

Note that there are two methods for obtaining the
moment matrices, given by Eqs. 4 and 5; the former is
obtained by integration of the recovered tractions over
the (real) x-y space, whereas the latter is obtained by
the formal equivalent of the vector derivative of the
tractions in Fourier space evaluated at the origin of k
space. These two expressions in practice can be quite
different. In principle, given that the moment matrix is
defined by an integration over real space, it might be
thought that using Eq. 4 directly would be preferable,

Fig. 5. The traction field computed from the displacement field in
Fig. 3 with the use of constrained FTTC, which solves the mixed
boundary value problem of prescribed displacements within the cell
boundary and zero tractions exterior to the cell. This is accomplished
iteratively by using the same Fourier method until convergence is
obtained. Arrows show the relative magnitude and direction of the
tractions. Colors show the magnitude of the traction vectors in Pa
(see color bar).

Fig. 4. The traction field computed from the displacement field in
Fig. 3 with the use of unconstrained Fourier transform traction
cytometry (FTTC), i.e., the direct computation of tractions from the
Fourier decomposition of the displacements. Also shown is the
boundary of the cell, although it is important to note that this
information was not used in computing the tractions. Arrows show
the relative magnitude and direction of the tractions. Colors show
the magnitude of the traction vectors in Pa (see color bar).

Table 1. Moment matrices M and Mrot computed by
unconstrained FTTC

Mij � ��2.83 0.92
0.92 �0.48��pNm�

Mij
rot � ��3.15 0

0 �0.16��pNm�

Net contractile moment � �3.3 pNm
Orientation of principal tractions 19°
Total strain energy U 0.21 pJ

Moment matrices M and Mrot computed by unconstrained Fourier
transform traction cytometry (FTTC) from the traction field shown in
Fig. 4. No assumptions are made regarding the shape of the cell or its
boundary. The orientation of the principal tractions in this and
Tables 2 and 3 is relative to the x-axis. Units are pNm (pico-Newton
meters) and pJ (picoJoules).

Table 2. Moment matrices M and Mrot computed by
constrained FTTC

Mij � ��1.98 0.48
0.48 �0.88��pNm�

Mij
rot � ��2.16 0

0 �0.70��pNm�

Net contractile moment � �2.9 pNm
Orientation of principal tractions 21°
Total strain energy U 0.12 pJ

Moment matrices M and Mrot computed by constrained FTTC from
the traction field shown in Fig. 5. Note that in this method, all
non-zero tractions are forced to lie within the cell boundary as drawn
by hand.
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but the existence of boundary tractions associated with
the Fourier decomposition in the first place implies a
potentially substantial error from the field boundary,
especially in unconstrained FTTC. By contrast, the use
of the first non-zero Fourier coefficient (Eq. 5) as a
measurement of the moment matrix has the advantage
of multiplying the entire field by the lowest frequency
sine component, thus exactly canceling the major di-
pole artifact arising from the boundary of the field of
view. This is the method we use.

As an aid to interpreting the relationship between
the traction map and moments, we show in Fig. 6, A
and B, the displacement field and traction field for an
artificially constructed example. The simulation con-
sists of two pairs of point traction sources of different magnitudes, scaled to be similar to those seen in real

cells. Note that the traction map has non-zero tractions
only at the four source points, whereas the displace-
ment field is non-zero over broader regions. (Because
this is a simulation with no artificially added noise, the
recovery of the traction map was identical between the
unconstrained and constrained FTTC methods.) For
this simulation, the moment matrices, orientation of
principal tractions, and strain energy are listed in
Table 3. This shows how the off-diagonal elements of M
arise when the laboratory coordinate system does not
coincide with the principal axes and how when suitably
rotated (here by �30° from the x-axis), the moment
matrix becomes diagonal (Mrot). The fact that Mxx

rot and
Myy

rot are both negative means that, as expected from
Fig. 6, the principal tractions are contractile. The mag-
nitude of Mxx

rot is larger than that of Myy
rot, corresponding

to stronger contraction along that axis.

Effect of Noise in the Displacement Data

With respect to questions of resolution and accuracy
in the presence of noisy data, it is important to recog-
nize that in the FTTC approach, noise arises only in
the estimation of the displacement field from the image
pairs; the calculation of the traction field is, apart from
round-off errors in finite word-length arithmetic, an
exact procedure. There are many different methods by
which to estimate the displacement field from image
pairs; the one we have chosen (locating peaks in the
cross-correlation function on windowed regions of the
two images) is convenient for our purposes, but it is not
the focus of this paper. We have, however, character-
ized the effect of displacement noise on the recovered
moment matrices, net contractile moment, and strain
energy, as described below.

We performed simulations where the displacement
field consisted of pure noise and examined the departures
of the recovered moments and strain energy from zero.
We performed 100 simulations using the same grid and
gel characteristics as in the real images in Figs. 2 and 3.
The displacement noise was Gaussian with a mean of
zero and a standard deviation of 1 �m. The traction field
was recovered by using both the unconstrained and con-
strained Fourier methods, where in the constrained case
we used the same cell outline as in Fig. 3. The results of
these simulations on the moment matrices, the net con-
tractile moment, and the strain energy are as follows.

Fig. 6. Simulation of the displacement field (A) associated with 2
pairs of point traction sources (B). This artificial example corre-
sponds to Figs. 3 and 4 for the real cell. The traction field (B) was
recovered with the use of unconstrained FTTC. The traction field
recovered with the use of constrained FTTC (not shown), with a
boundary of an imaginary cell shown by the white line, was indis-
tinguishable from the traction field in B.

Table 3. Moment matrices M and Mrot computed by
unconstrained FTTC from artificial data

Mij � ��1.03 0.51
0.51 �0.52��pNm�

Mij
rot � ��1.35 0

0 �0.20��pNm�

Net contractile moment � �1.6 pNm
Orientation of principal tractions 32°
Total strain energy U 0.11 pJ

Moment matrices M and Mrot computed by unconstrained FTTC
from the traction field shown in Fig. 6B (artificial example). Con-
strained FTTC yielded the same results.
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The elements of the moment matrices were not signifi-
cantly different from zero. This was to be expected, be-
cause the tractions are linear functions of the displace-
ments and the expectation values of the noise in the
displacements are zero. Because this is true of all ele-
ments of the moment matrices, the effect of the noise on
the net contractile moment also is not significantly dif-
ferent from zero. In any given single realization, however,
it is important to know the expected magnitude of the
departure from zero. The standard deviation of the net
contractile moment arising from pure noise, from these
simulations, is 0.29 and 0.21 pNm per micrometer stan-
dard deviation of displacements in the unconstrained and
constrained case, respectively. The effect of noise on
strain energy is quite different; unlike the tractions (and
therefore the moments), which are linear functions of
displacement, the strain energy is quadratic. This im-
plies that the expectation value of the strain energy due
to pure noise is non-zero. In our simulations, we found
that the energy associated with displacement noise is
11.1 and 0.88 pJ per square micrometer of displacement
variance in the unconstrained and constrained case, re-
spectively. This substantial difference in strain energy in
the constrained and unconstrained cases (roughly a fac-
tor of 12) is precisely what was expected, because the
total field area is roughly 12 times the area bounded by
the cell (Fig. 3), and there is no strain energy in the gel
conferred by surface tractions exterior to the cell in the
constrained case.

DISCUSSION

Advantages and Disadvantages in Unconstrained
and Constrained FTTC

There are a number of advantages (	) and disadvan-
tages (�) associated with unconstrained and con-
strained FTTC.

Unconstrained FTTC. (	/�) All of the observed data
are used, including the displacements of beads exterior
to the perceived cell boundary. The falloff in displace-
ments exterior to the cell constitutes additional infor-
mation regarding the overall traction field, especially
when the distribution of beads is sparse within the cell
boundary. This may seem to be an obvious advantage;
it is in large measure true. However, the falloff in
displacements from any particular traction source
point is like 1/r, so the information “content” of dis-
placements exterior to the cell is correspondingly low,
and important information may in fact not be lost.

(	) The cell boundary need not be identified, and, as
such, no investigator judgment is necessary to identify
this boundary. This is an advantage over all con-
strained methods insofar as force generation associ-
ated with small filopodia, flat lamellipodia, or fibrous
connective tissue elements may be missed in the orig-
inal micrograph images.

(�) As with all discrete Fourier problems imple-
mented over a finite space, the inherent periodicity
introduces artifactual tractions at the boundary of the
field because the measured displacements are not
strictly periodic. To the extent that these are remote

from the cell, they pose no difficulty. Moreover, such an
artifact is equivalent to a dipole field on the boundary,
which does not strongly influence the computed cell
tractions. These boundary artifacts are easy to recog-
nize and can be safely ignored.

(	) Errors in the recovered tractions exterior to the
real cell boundary, secondary to noise in the displace-
ment field, will have zero mean if the noise has zero
mean. This follows from the linearity of relationship
between tractions and displacements.

(�) By contrast, the strain energy (which is qua-
dratic in the displacements) will be artifactually high
due to the contribution of noise in the traction field
exterior to the cell.

Constrained FTTC. (�) If the cell is exerting non-
zero tractions on the substrate at locations exterior to
the perceived cell boundary, the interior tractions will
necessarily be in error, because they must compensate
for these tractions that were incorrectly constrained to
be zero. This results in artifactually large tractions,
especially in the vicinity of the imposed cell boundary.
The danger here is that the large tractions at the
perceived cell boundary may be interpreted mistakenly
as reflecting real traction concentrations.

(	/�) Constrained FTTC requires an iterative ap-
proach, and so computational efficiency is not guaran-
teed. In our experience, however, we have found that
the iterative scheme described above typically con-
verges quite quickly (typically �10 iterations) so that
this approach is also not computationally intensive.

(�) The nature of the mixed boundary condition
implies that an assessment of the noise on the final
traction field is difficult. This is because the induced
level of noise depends on the boundary of the cell.

(	) The strain energy in constrained FTTC is confined,
by construction, to the interior of the perceived cell
boundary, so there is no contamination of the net strain
energy from noise in the exterior displacement data.

There are several advantages to FTTC common to
both the constrained and unconstrained implementa-
tions. These include the following: (	) The moment
matrix is an especially simple formulation in Fourier
space. No additional calculations are needed.

(	) The use of the FFT implies that the entire prob-
lem of traction measurement is no longer computation-
ally intensive; large image pairs can be analyzed in
seconds or minutes.

Effect of Noise on Traction Recovery in the Example
Smooth Muscle Cell

Here we describe the effect of noise on our actual
computations of moments and strain energy associ-
ated with the smooth muscle cell shown in Figs. 1–5.
A comparison of the root mean square tractions ex-
terior to the cell boundary with that associated with
pure noise, as described in RESULTS, gives a rough
estimate of the noise in the displacement field and is
a conservative estimate insofar as there appear to be
patches of non-zero correlated tractions in Fig. 4,
possibly secondary to other cells exterior to the field
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of view. In our case, this results in an estimate of
�0.05 �m root mean square noise level in the dis-
placement field. From the pure noise simulations
quoted in RESULTS, this amounts to an uncertainty in
the net contractile moments of 0.015 and 0.010 pNm
in the unconstrained and constrained cases, respec-
tively. These numbers should be compared with
those in Tables 1 and 2, where the net contractile
moment of the cell is �3 pNm in magnitude and
shows that noise is negligible in its contribution to
these estimates. By contrast, as remarked above, the
strain energy is quadratic in the noise level, so
displacement noise of 0.05 �m corresponds to
roughly 0.025 and 0.0025 pJ in the unconstrained
and constrained cases, respectively. The difference
in the estimated strain energies for the real cell in
the unconstrained and constrained methods, from
Table 1 and Table 2, is roughly 0.1 pJ, and we
conclude that noise may account for some quarter of
this difference. Inspection of Fig. 4, however, shows
that this is also to be expected, because the patches
of correlated tractions will certainly contribute to
these differing estimates.

Remarks on the DW Method

The DW method specifies both tractions (exactly)
and displacements (approximately) exterior to the
perceived cell boundary. This particular specification
of the problem requires special techniques because
these are approximate Cauchy conditions, for which
the elliptic Navier equations of elasticity in general
have no solution. This is an ill-conditioned problem
that necessitates smoothing or regularization to ob-
tain stable solutions. The DW method utilizes the
regularization method introduced by Tikhonov in the
1940s (summarized in Refs. 8 and 9) with the choice
of smoothing functional and level of smoothing intro-
duced by Phillips (6) and Twomey (10). In brief, the
residuals of the displacement field plus a certain
amount of the L2 norm of the gradient of the traction
field (the regularizing functional) are minimized,
and the displacement residuals are examined. The
level of smoothing is then varied until there is an
appropriate level of variation in the predicted dis-
placements, given a priori information about the
noise in the displacement field (6). For problems that
are highly ill conditioned, and when there are unam-
biguous a priori constraints, this kind of approach is
often useful and appropriate (2). By contrast, the
displacement kernel in the Boussinesq solution de-
cays like r�1, which is sufficiently rapid that in FTTC
we do not find unacceptably large oscillations in the
recovered traction field that would necessitate a Ti-
khonov-type approach.

Recommendations and Conclusion

On the basis of the results presented, the best
strategy for measuring traction field using FTTC
may be summarized as follows. An initial examina-
tion of the traction field recovered with the use of

unconstrained FTTC will reveal the extent of signif-
icant tractions exterior to the perceived cell bound-
ary. If these can be determined to result from con-
tractile cells exterior to the field of view, the traction
maps obtained with constrained FTTC may be more
accurate. On the other hand, such tractions might
arise from real structural elements that are not seen
in phase-contrast microscopy and that are preserved
in unconstrained FTTC. Whichever method is used,
the traction moments are easily computed in Fourier
space, whereas the strain energy is best computed
with constrained FTTC, integrating over real space.
If desired, the noise level in the displacement field
may be estimated by examination of its Fourier spec-
trum at high frequencies, where the white noise is
manifest as a constant level of intensity.

In conclusion, Fourier transform traction cytometry
is a new solution to the problem of mapping of the
traction field between a cell and its substrate, given the
displacement field between two micrograph images.
This method has the advantages of being exact, com-
putationally efficient, and not subject to certain arti-
facts that can lead to misleading conclusions. This
approach also yields simple measures of the net con-
tractile moment of the cell, the strain energy imparted
to the substratum, the orientation of the principal
tractions, and a quantitative index of cell polarity.
FTTC may represent a new and important tool for
studying the mechanical properties and function of
adherent cells.
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